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The signal transduction chain of amoeboid migrating cells, such as human granulocytes, is approxi-
mated. Only the mean concentration of intracellular messenger molecules is considered. The weak cel-
lular input signal originating from membrane-bound receptors occupied by molecules that stimulate mi-
gration steers a large flux of energy and mass. The strong second intracellular signal is produced by a
chemical amplifier. Several functions are performed by this second intracellular signal: (i) the activation
of the microfilaments (linear motor), (ii) the renewal of the membrane-bound receptors, and (iii) the al-
teration of the input characteristics of the chemical amplifier. The rate equation for the second
messenger is derived. The solution of this machine equation is compared with experimental results. The
chemokinetic dose-response curve, as well as a machine cycle, are predicted. A threshold concentration
of the migration-stimulating molecules is predicted. At high concentrations, the cells are in an activated
state with self-maintained oscillations of the second intracellular messenger, and at low concentrations,
the cells are in an inactivated state without oscillations. The migration-stimulated cells are compared to

a laser.

PACS number(s): 87.10.+e¢, 87.22.Nf, 82.70.—y

INTRODUCTION

Interest in physical models of biological phenomena
has grown considerably in recent years, and physicists are
attracted by this interdisciplinary field. The physical ap-
proach is basically to treat a biological system as a physi-
cal state which is highly organized and complex, like a
machine in which every part is more complex, more
efficient, more precise, and much smaller than one is used
to. The purpose of the present work is to show the analo-
gy between a natural machine like a cell with its amoe-
boid movement induced by extracellular signal molecules,
and man-made machines.

Many natural scientists are fascinated by the ability of
single cells of the immune system to detect, respond to,
and destroy microorganisms. Embryogenesis and wound
healing are two of many examples where amoeboid move-
ment plays a role [1,2].

An explanation of any biological processes is based on
the maintenance of flux of energy and of matter through
the systems [3]. The energy fed into the system in the
form of chemical energy, whose processing involves many
microscopic steps, eventually results in ordered phenome-
na on a macroscopic scale—for example, formation of
macroscopic patterns in morphogenesis (self-organization
of many migrating cells [4]) and migration of cells (self-
organization of compartments within one cell [5]).

An important property of many biological organisms
consists in their ability to actively move themselves
through the medium. This motion is induced by process-
es which take place inside the living beings, which in turn
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represent open systems far from thermal equilibrium.
The actual mechanisms of self-motion of even single liv-
ing cells are considered to be very complicated [3].

Nonlinear dynamics is recognized as playing a crucial
role in a wide variety of disciplines. The systems them-
selves may be physical, chemical, or biological, and the
result is the spontaneous formation of new temporal
and/or spatial macroscopic structures. This self-
organization concept is clearly of particular relevance to
complex systems both natural and artificial in origin. It
is unfortunate so little progress has been achieved in the
past towards the understanding of synchronization, pat-
tern formation, and turbulence in nonlinear self-
oscillatory media and related many-body systems, in spite
of their great potential importance. The underlying
physics is closely related to the slaving principles, whose
conceptual importance in nonlinear dissipative dynamics
in general was emphasized by Haken [3] and first demon-
strated by his team in laser theory.

Artificial life is intended to display the essential prop-
erties of living beings without repetition of their biochem-
ical material basis [6]. Our working concept—
experimentally as well as theoretically—is to start with
real cells such as human leukocytes: In the first step, the
phenomenological equations for migration are experi-
mentally established—a steerer for the speed and an au-
tomatic controller for the direction of migration [7,8].
Then, the essential cellular components for migration are
experimentally determined [9,10]. The machinery which
creates the cell locomotion contains only a few elements:
a part of the plasma membrane, unstructured cytoplasm
as seen by light microscopy, and the necessary biochemis-
try. These fragments (ghosts) change their shape con-
tinuously during the directed and nondirected amoeboid
movement. The third step is of current interest: the
steerer and the automatic controller are explained on the
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basis of the involved biochemical reaction chain.

It was shown for granulocytes, monocytes, somatic
fibroblasts, and neural crest cells that two independently
working cellular machines exist—a steerer and an au-
tomatic controller [7,11]. In fact, the migrating cells can
be compared with a driven car where the speed, adjusted
by the gas pedal, and the moving direction, adjusted by
the steering wheel, can be independently altered.

Steerers and servo mechanisms are control systems in
which a hydraulic, pneumatic, or other type of control-
ling mechanism is actuated and controlled by a low ener-
gy signal. In fact, steerer and servo mechanisms are as
essential in biological systems as they are in modern tech-
nological society [12].

The cellular speed of granulocytes is generated by a
steerer mechanism which is based on chemical reactions.
The weak input signal originating from approximately
1000 membrane-bound receptors (high affinity receptors)
occupied by molecules that stimulate migration, steers a
large flux of energy and mass [13]. The result is an
amplified output signal—the second intracellular signal
which is responsible for the cellular speed. A process
which will be discussed here. Our working hypothesis is
that the total system can be viewed as an assembly of a
large number of identical local systems which are coupled
to each other.

SIGNAL TRANSDUCTION CHAIN

The basic biochemical reactions of the cellular signal
transduction chain are essentially known [13-15], but the
physical events are less understood. In Fig. 1 the chemi-
cal aspects (molecular approach) of the signal transduc-
tion chain as well as the physical aspects (machine
description) are shown. First, we want to summarize
what is known about the signal transduction chain of
granulocytes [13].

One main function of the membrane is to separate the
intracellular space from the extracellular space. In addi-
tion to this main function, the membrane is the first ele-
ment in the signal transduction chain.

chemokinesis stimulating molecule
(concentration c)

CELLULAR INPUT
receptor R o

! amplification

feed back

G-protein
I amplification chemical
amplifier

phospholipase C

| amplification

second messengers M

| I

activation of microfilaments
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migration force F, torque T

FIG. 1. Schematic representation of the cellular signal
transduction-response chain. The chemical approach is shown
on the left side and the physical approach on the right side.
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Detection system and first intracellular messenger.
Specific molecules, C, stimulating random locomotion
(chemokinesis) and directed locomotion (chemotaxis)
bind to the membrane-bound receptor, R, and create the
first intracellular signal, R.

Amplification chain. The receptor complex, R, can be
regarded as the first element in the biochemical
amplification chain. One receptor complex, R, activates
many membrane-attached G proteins. The activated G
protein activates the phospholipase-C protein. One
membrane-incorporated phospholipase-C protein hydro-
lyzes many ATP-activated phospholipid (phosphatidyli-
nositol) molecules on the inner side of the membrane.

Second intracellular messengers. The water soluble
head group inositol triphosphate opens calcium channels
and intracellular calcium stores. Inositol triphosphate
and calcium are regarded as the second cellular
messengers. The increased concentration of second
messengers triggers several functions:

(1) Linear motor. The amoeboid migration of the cell
is induced by the second messenger triggered adhesion of
the plasma membrane to a substrate and by the second
messenger dependent activation of microfilaments (mus-
cles).

(2) Self-ignition mechanism. Vesicles loaded with fresh
receptors are forced to fuse with the plasma membrane.
This fusion process is induced by the increase calcium
concentration, the calcium concentration gradient close
to the opened calcium channels, the concentration of the
watersoluble inositol triphosphate, and the concentration
of the membrane soluble diacylglycerol molecules [5,8].
The exposure of fresh receptors is the start of a new cy-
cle.

Our approach to the signal transduction chain is actu-
ally a technical one. The right side of Fig. 1 could be a
drawing for the machine shop to build a machine. The
machine works far from thermal equilibrium even if it is
not shown explicitly, e.g., an amplifier can only work far
from thermal equilibrium since a weak input signal is
used to control a large flux of energy and of mass to
create the amplified output signal.

The linear motor and the chemokinetic
dose-response curve

A simple technical description of the cellular signal
transduction chain [16,17] predicts the chemokinetic
dose-response curve. The rate equation for the cellular
second messengers, M, is

%=k,s—de. (1)
The first term describes the production rate of the intra-
cellular second messenger. The cell is stimulated by sig-
nal molecules such as f-Met-Leu-Phe to produce intracel-
lular second messengers. The occupancy of the
membrane-bound receptors is regarded as the first intra-
cellular signal, S. k, is a signal transduction coefficient.
The second term describes the decomposition of the
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second intracellular messengers and k; is a decay
coefficient. The first intracellular signal is the fraction of
occupied receptors,

4

S(C,t)zRo(t)m .

(2)
The number of receptors, R,(t), is altered by a machine
cycle which will be explained as follows: in the time in-
terval (0,¢,), R, receptors are exposed at the membrane
and can be occupied by molecules of the extracellular
space. No active receptors are available in the time inter-
val (¢,,T), where T is the repetition time. The mean con-
centration of the second messenger, M, can be obtained
by solving differential equation (1) for the two time inter-
vals,

c

M=A i Ky (3)
A is essentially constant when k,¢; <1. The second in-
tracellular messenger activates the microfilaments of the
linear motor where traction is produced by converting
chemical energy into mechanical work. The produced
line tension (traction), o, at the leading edge can be ap-
proximated by the following expression:

0"=KA04———C—

c+Kg KoV “@

The first term describes the maximum traction which is
assumed to be proportional to the second messenger. K ,
is a signal transduction coefficient. The second term de-
scribes that the construction work of the cellular linear
motor is more difficult under speed. This process is
quantified by an intrinsic motor friction coefficient, K,.

The linear motor of granulocytes can be investigated in
the following way: A cell migrating in a narrow tube is
forced to stop by applying counter pressure. The experi-
mental result is approximated by the following equation
[18]:

o=oN1—av) (5)
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FIG. 2. Chemokinetic dose-response curve of granulocytes
stimulated by signal molecule f-Met-Leu-Phe (tripeptide) of the
extracellular space. The dots are experimental data from Ref.
[36]. The line is a prediction of the simple model [Eq. (6) with
Kz =0.04 nM]. The dotted line is a prediction of the more real-
istic model of the cellular signal transduction chain [Eq. (34)
with K =0.04 nM].
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with o) (=K 44)=2.040.18 mN/m and v, =a"'
(=AK 4/Kp)=0.1410.04 um/s for ¢ > K. The intrin-
sic friction coefficient, K, of the motor is then 1414
kPas.

The mean cellular speed of granulocytes is predicted as

K
p=A A € 4

—_— —_ 6
Kp c +Kgx '™c+K, ©

since the friction between the cell body and the substrate
is negligible [18]. The measured chemokinetic dose-
response curve as shown in Fig. 2 exhibits the predicted
behavior. The total number of occupied receptors,
representing the first intracellular signal, is proportional
to the cellular speed.

This simple approximation of the signal transduction
chain serves to explain the linear motor and the chemo-
kinetic dose-response curve. In the next step we will
show the essential steps in the signal transduction chain
for predicting the periodic temporal variations of the re-
ceptors and the second intracellular messenger.

Machine cycle

Our working hypothesis is that the increases in the
concentrations of second messengers such as calcium and
the hydrolyzed products (inositol triphosphate and dia-
cylglycerol) are the stimuli for the fusion of the vesicles
with the plasma membrane [5]. Thus, we are dealing
with a self-ignition machine like a Diesel engine. The
measured delay time between the application of an extra-
cellular signal and the formation of intracellular signals
that are responsible for the establishment of fresh recep-
tors, is essential for the self-ignition mechanism.

For granulocytes the following experimental facts are
in accordance with our working hypothesis:

(i) The predicted lag time between signal application
and cellular response (formation of a new leading front)
has been measured. It was approximately 10 s for
chemotaxis (micropipet) [19], 8—10 s for necrotaxis (Fig.
3), and 8-10 s for galvanotaxis [20,21].
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FIG. 3. Necrotactic field-jump experiment [37]: The polar or-
der parameter, (cosqo), as a function of time ¢ is shown. The
central symmetric cellular guiding field was switched on at t =0
when an erythrocyte in the center of the viewing field was lysed
by a light pulse (ruby laser). The first cellular response was ob-
served after a lapse time of 8—10s (r=38s).
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(ii) The predicted intracellular cycle can be determined
by measuring the rhythmic fluctuations of the electric
transmembrane potential difference with a microelec-
trode (Fig. 4) [22].

(iii) The existence of the cellular cycle can be shown by
applying periodic extracellular signals (Fig. 5) [21]: The
intracellular cycle can be slaved by the extracellular sig-
nal. It was possible to synchronize granulocytes by short
electric pulses (0.8 V/mm for 1 s) with a repetition time
of a multifold of 8 s.

(iv) The shape of migrating granulocytes showed
rhythmic undulations with a characteristic time of 10 s
[23].

(v) The shape of suspended granulocytes showed
rhythmic oscillations with a characteristic time of 8 s
[24,25].

The experimental data shown support a cyclic com-
ponent in the overall mechanism of granulocyte motility
with a characteristic time of 8 to 10 s. Next, the cyclic
working signal transduction chain will be derived by con-
sidering more details of the biochemical reactions.

Detection system

The first step in the signal chain of the cellular
machine is the provision of new receptors, R, in the mem-
brane. The rate equation for this process is approximated
by the following equation:

%‘;-=kfF(M)~—k,eR —ky Re+kypRe - %0
10 mV
1 min
10mV
1 min

FIG. 4. A typical membrane potential difference as a func-
tion of time is shown [22]. Two characteristic times can be seen:
T,=8sand T,=60-80s.
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FIG. 5. The steady state polar order parameter of granulo-
cytes exposed to pulsed electric guiding fields (E =0.8 V/mm,
T;=1 s) as a function of repetition time T is shown [21]. The
line is a prediction [8]. [The values of the machine coefficients
were obtained from quantification of the random walk (mean-
squared displacement vs time) and quantification of the directed
movement (polar order parameter vs applied polar guiding
field)]. The dotted line is obtained for synchronized cells.

The first term describes the fusion of vesicles with new re-
ceptors, with the plasma membrane. The fusion process
is assumed to be triggered by the signal molecules coming
out of the chemical amplification chain—the second in-
tracellular messengers, M. The inactivation of the recep-
tors is described by the second term. The next terms de-
scribe the binding of a chemoattractant molecule with
concentration ¢ at a receptor with concentration, R. This
binding process is regarded as reversible.

The renewal of receptors is considered as a process
with a high cooperativity. Which means, e.g., not only
one type of second messenger is involved but several
types such as calcium and inositol triphosphate ions and
diacylglycerol molecules. The unknown vesicle fusion
function, F (M), may be approximated by the following
analytical expression [26] (Fig. 6):

n
Fon=—2"_ ®)
Ki+M"

It is assumed that n different types of second messengers
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FIG. 6. The function F(M) (vesicle fusion process), the func-
tion B(M) (amplifier characteristics), and the decay function
H(M) (second messenger decay) as a function of the second in-
tracellular messenger M are shown.
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are involved with the same sensitivity (M is measured in
units of K). For example, (i) the water soluble second
messengers such as calcium and inositoltriphosphate, can
induce vesicle fusion; (ii) the remaining lipid diacylgly-
cerol with its uncharged small polar head as well as the
ion flux through the calcium channel are involved in the
fusion process.

The rate equation for the chemoattractant-receptor
complex, R, is then

dRc
——kllRC _kZZRC_kZeRC .

at 9)

The first two terms describe the binding dynamics of the
chemoattractant molecule to the receptor. The inactiva-
tion of the occupied receptors is described by the third
term.

The temporal behavior of the cellular detection system
can be predicted by solving the following system [Egs. (7)
and (9)]:

J

a, exp[A (¢t —1t")]+a, exp[A(t—1t')]
aptay

R(t)=kff0'
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’F(M)dt’ ,

ay; exp[A(t—t")]—a,; exp[A,(t —1")]

t
R-(t)=k
c®) ffo ap,tasy

The temporal evolution of R and R is governed by the
two eigenvalues A; and A,. One of them, A, describes
purely the fast kinetics of the ligand binding process
(<<s) [27]. The other one, A,, is the slow inactivation
process of the receptors (R and R_) (in the order of s)
[14].

Adiabatic approximation. The temporal evolution of
the vesicle fusion as described by F(M) should slowly
vary in time compared with the ligand binding process as
described by exp[A;t]. The temporal change of the
membrane-bound receptors, R(¢), then reads in case of
the simplification 2k, =k, +k,,.

kf ky Tk, _ a e
2k, kyytkye Taptay A,

(15)

Ayt

R(t)=F(M)

An adiabatic approximation can be used if the receptor
loading kinetic is fast compared with the temporal varia-
tions of the receptor density. If this holds true, only the
steady state concentrations for both R and R have to
be considered. One obtains (see Appendix B)

Kp+ ke
R*=F(M) ky ° K (16)
2k, Kgt+c ~’
k
d=F(M)-L—= 17
Re=F )2kec+KR 1n
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d | R an ap R F(M)
dt |Rc - a; ap| |Rc tky 0 19
with
ay=—(kpyetky),
ap=ky ,
a, =kpc,
ay=—(kytky) .
The eigenvalues
AM=—(kyctky), Ay=—(ki,*+ky) (11)
are obtained from the homogeneous equation
an—A ap
4y ay—h =0. (12)

The temporal changes of the number of receptors, R(¢),
and of receptor-complexes, R(?), are (see Appendix A)

]F(M)dt’ .

with Kz =k,,/k;;. The second equation is formally
identical with Eq. (2) which is obtained from the model of
the simple signal chain approximation. But the temporal
variations of the receptors are predicted by the more
complex model of the signal chain

R,( —FM)kf
o) =F(M) 7

. (18)
As expected, the total number of receptors is given by the
fraction of the vesicle fusion rate, k,F(M ), and of the re-
ceptor inactivation rate, 2k, =k, +k,,.

Amplification chain

The chemical amplification chain in the cellular signal
transduction chain is a sequence of chemical reactions
where the first intracellular messenger, S;, (=R), starts
the reaction.

Sin—->S1—>SZ—>"'—>SN=S (19)

out °

A Fokker-Planck equation can be used to approximate
the chemical amplification chain as it is shown in Appen-
dix C. A matrix notation is used below:
ds
dt
with

=AS+B (20)
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S, —(fy+by) b, 0 kyS;n(M)B(M)
fi —(fot+by) by 0
S= , A= - ces e , B=
Sy 0 0 fyn—1 —(fy+by) 0

The chemical reaction chain can be described by forward
reaction coefficients, f;, and backward reaction
coefficients, b;. To simplify the mathematical expres-
sions, all forward reactions are approximated by one
coefficient, f,, and all backward reactions by one
coefficient, b,.

The input signal, S;,(M), and the amplifier characteris-
tics, B(M ), are functions of the second intracellular sig-
nal. The amplification chain is based on enzymatic reac-
tions which can be inhibited or enhanced by specific mol-
ecules. The second intracellular messenger molecules can
be regarded as such specific molecules. For example, two
types of ions may be involved—the calcium and the ino-
sitol triphosphate ions. This idea will be introduced here
in a simplified way: Only the first reaction in the signal
chain is assumed to be a function of the concentration of
the second intracellular messengers, M. The unknown
amplifier characteristic, B(M), may be approximated by
the following analytical expression [28,29] (Fig. 6):

M1 Kj

B(M)= = :
Ki+M9 | Kg+M?

1._

(21)

The cooperativity is described by the number g of in-
volved different types of second messenger molecules (M
is measured in units of K ).

In more technical terms, B(M) represents the input
characteristic of the amplifier when multiplied with the
signal S;, coming out of the detection unit, and results in
the input signal G(M(t))[=k,S;,(M)B(M)] which de-
pends on the concentration of the second messenger M.
The vesicle fusion process, F(M), as well as the input
characteristic of the amplifier, B(M), represents possible
feedback mechanisms.

The above mentioned set of rate equations (20) can be
solved in the following way: A new variable, p, is intro-
duced by using the Laplace transformation. The input
signal and the signal within the amplifier then reads

Sp)=[ e PG(t)dr (22)

es=,.(p)=_['0“°e*1"3,.(1)‘#, i=1,...,N. 23)

For simplicity, we assume that the backward reaction can
be neglected with respect to the forward reaction
(fo>>by). The signal within the amplifier is described by

(p+fo)$1=9(p), 24)
P+ fo)E=1oS, (25)

(26)
PSN=foSN-1 - (27)

N describes the number of elementary steps in the chemi-
cal amplification chain. This system of equations can
easily be solved, and we obtain for the signal, &y(p),
coming out of the chemical amplifier

N—1
0

Sylp)=—"%
N

S(p) . (28)

The time-dependent output signal is obtained by making

the back transformation of Eq. (28) (convolution
theorem)

S (t)=—f£1—ftt’w—”exp[-—f t'1G(M(t—1¢'))dt’
N (N—1)Y0 0 '

(29)

The signal Sy(¢) coming out of the amplification chain
can be explained in the following way: (i) The
amplification is described by the factor in front of the in-
tegral. (ii) The change between input and output signal is
described by the integral. The output signal is a function
of the input signal G(M (¢t —t')), and the concentration of
the second messenger M, at previous times ¢t —t' where
the Poisson distribution

t(N—l)

p(N—1,t)= ( exp[ — fot] (30

N—1)

is the weight function. The time lag, T(=N/f,), be-
tween the input and output signal is an important proper-
ty of the chemical amplifier.

Second intracellular messenger

The second intracellular messengers are formed in the
last step of the amplification chain:

L1M=foSN(M(t~t'))—H(M).

dt (31)
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The first term on the right-hand side describes the output
signal of the chemical amplification chain. The second
term describes the decay of the second messenger. The
unknown decay function, H(M ), may be approximated
by following analytical expression [28,29] (Fig. 6):
HM)=d,M+k,—2— (32)
K;+M"

Chemical reactions and the action of ion pumps can de-
cease the second messengers. These actions are described
by the first term. The second term describes processes
like adsorption or flux through ion channels. The
cooperativity is described by r (signal transduction
coefficients d;, and k,; M is measured in units of K}, ).

The final rate equation for the evolution of the second
messenger is obtained from Eq. (31) by inserting Eqgs. (29)
and (32):

aM _

dar (N—l)'ft'w—”e"p[—f’]

XG(M(t—t'))dt' —H(M) . (33)

The first term on the right-hand side describes the gain
and the second term the loss. This equation can be
simplified by introducing a dimensionless time, t*=f,t
(in subsequent equations ¢ means the new time where the
asterisk is omitted):

aM
f() dt

TN——:—I—II‘ _”exp[—t 1G(t—¢')dt’

—HM) . (34)

This equation approximates more accurately the cellular
signal transduction chain than the above shown simple
approximation [Eq. (1)]. Only one equation has to be dis-
cussed in case of the adiabatic limit. Otherwise, Eq. (34)
in connection with Eq. (14) have to be solved.

At first glance, it seems that the more accurate approx-
imation of the signal transduction chain leads to a very
complex model where many assumptions were used. But
there are only four crucial properties:

(i) Detection: The first intracellular signal are the
membrane-bound receptors loaded with kinesis stimulat-
ing molecules of the extracellular space.

(i) Inertia: The signal coming out of the chemical
amplification chain is delayed with respect to the input
signal.

(iii) Feedback: The receptor supply and the input
characteristic of the amplifier are functions of the second
messenger from previous times.

(iv) Deactivation: The second messengers are deac-
tivated.

SELF-IGNITION MACHINE

As we have shown above, the cellular signal transduc-
tion chain can be split into three parts: (i) the first intra-
cellular messenger, (ii) the chemical amplifier, and (iii) the
second intracellular messenger. The self-ignition
machine is discussed in the adiabatic approximation.
Thus, only the highly nonlinear differential equation [Eq.
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(34)] has to be investigated which will be solved numeri-
cally. Choosing appropriate values for the coefficient, os-
cillations in the receptor density as well as in the concen-
tration of the second intracellular messenger, M, are ob-
tained.

Next, the transition between the oscillatory and nonos-
cillatory states will be investigated. The nonlinear
differential equation will be linearized.

Stability analysis

In the first step, the steady state of the nonoscillatory
state is considered. The steady state value of the second
intracellular messenger may be M. Taylor series close to
the steady state value are taken for the gain function,
G(M), and the loss function , H(M ):

3G
GUN=GM)+ 3o | (M=Mo)+ -+, (9)
HM)=H(M,)+ L W M—MF 66

In the case of steady state (dM /dt =0, M —M,=0), Eq.
(34) then reads

GoP(N,t)—Hy=0 37
with the incomplete gamma function, P(N,t), of order N:
P(N,t)=(—1\7—i—1)—!f0’t"N*“exp[~t']dt' (38)
and the abbreviations
Gy=G(My)=k,i(c)F(M,)B(M,) , (39)
H,=H(M,) (40)
with
kg=—I;b—l:L , (41)
c— ke
i(c )=$ . (42)
Kg+c

The gain term, G, is modulated by basically the first in-
tracellular signal i(c).

The signal chain for large time ¢ is of interest. Thus,
Eq. (37) can be simplified since each incomplete gamma
function P(N,t), N=1 tends to 1 for t— oo (Fig. 7).
One obtains

GO—HO=O > (43)

where the gain equals the loss. To solve this equation,
one needs actual values for the assumed gain function,
G(M,), and the loss function, H(M,). The calculations
are performed with the following values: ki=2,
k=10, k,=1/10, k,=10, k,=2, d,=1/10,
K,=1/10, K,=5/100, K;=5/100, fo,=1, ¢=n=1,
r=2. Two solutions, My (=0) and M,,, are found as
can be seen from Fig. 8. The first one is unstable because
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FIG. 7. The incomplete gamma functions, P(n,x), as a func-
tion of x are shown for different n(=1,5,11).

o(G—H)

M >0 (44)

Moy,

and therefore of less interest. But the second one is stable
because

dG—H)

Y Y; <0. (45)

Moy,

The main task is to find out under which conditions the
state My, becomes unstable.

The essential quantity which can alter the stability is
the concentration, ¢, of the chemokinesis-stimulating
molecule in the environment of the cell since the term,
Gy, is proportional to i(c) [see Egs. (39) and (42)]. The
system performs oscillations at large ¢ and is stable at
small ¢. At the critical concentration, c,., the cellular
state alters from a stable state to an oscillating state.

Next, Eq. (34), which describes the signal transduction
chain, will be linerized and analyzed in respect to
its stability. A linear equation in respect to
m(t)[=M(t)—M,] is obtained (see Appendix D),

foa;—’:l=GoP(N,t)+G{,m(t—N)-—[H0+H{,m(t)] ,

(46)

9 T T T T T T T
8 —
7 i
6 -
5 4
4 -
Go—Ho | i
2 i
1 -
0
1k B
-2 A 1 L L 1 L L
0 0.2 0.4 0.6 0.8 1 1.2 14
M

FIG. 8. The function Go—H, is plotted vs M for different
concentration c. The steady state is obtained for G, —H,=0.
One solution, M,,, is obtained for M =0. The value of the
second solution, M,, depends on the concentration c.
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with H{,=0H /dm| M, It is not necessary to consider

this inhomogeneous differential equation since the kinet-
ics is already described by the homogeneous equation:
foid?—=G6m(t—N)*H6m(t). @7)
The basic features of the cellular signal transduction
chain are described by this differential equation. The
temporal variations of the second messenger (left-hand
side of equation) depends on the production rate (first
term on right-hand side) and the loss rate (second term).
The linearized production function, G(M ), depends on (i)
the receptor supply, (ii) the fraction of occupied recep-
tors, and (iii) the amplifier characteristics. In the present
model it is assumed that the receptor supply function,
F(M), and the amplifier characteristics, B(M), are func-
tions of the second messengers. The occurrence of the os-
cillating state is not very sensitive to the chosen func-
tions, F(M) and B(M) (gain), and H(M) (loss).
We are looking for the condition where a nonoscillato-
ry state is altered to an oscillatory state [30]. The solu-
tion of the linear differential equation (47) is

m(t)=mge™ . (48)

A transcendental algebraic equation is obtained if Eq.
(48) is introduced into (47),

A=Gyexp[—AT]—Hy , (49)
with the new quantity A=foA ‘and the delay time
T=N/f,. The complex number, A, can be split into its
real and imaginary part (u+iw) and one obtains from
Eq. (49) an equation for the real and another one for the
imaginary part:

u=Ge *lcosoT—Hy , (50)

0o=—Gje H*lsinoT . (51)

For u <0 the system reaches a stable state (damped oscil-
lations) but for u > 0 the amplitude of the oscillations in-
creases with time. Thus, a critical condition is reached if
the real part vanishes. The following two equations are
obtained for 4 =0:

2 ttaneT=0, (52)
H,

GP—HP+w*=0. (53)

These equations can be solved in the following way. First
o as a function of M, is calculated from Eq. (52), (note
His a function of M;). Then, o is inserted into Eq. (53).
A rootfinding technique is used to determine the value of
M, where Eq. (53) hold true. Typical results are shown
in Figs. 9 and 10. In Fig. 9 the function G — H? +w? of
Eq. (53) is shown for different delay times T. Note, the
chemical amplification factor, N, is proportional to delay
time T(=N/f,). The value M,, where G —H{ +w?
equals zero, is large for small delay times T. The critical
concentration, c,, is finally obtained from Eq. (43). By
varying ¢ and finding the second root of Eq. (43), we ob-
tain the curve shown in Fig. 10, where M, is plotted
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FIG 9. The function GiZ — H@ —w? is plotted vs M, for vari-
ous N. For large N the intersection (G —H{ —w»*=0) tends
to a limit value M.

versus the concentration c¢. For large amplitude
(N— ), the critical concentration approaches a small
finite concentration value (=0.78). For Ilow
amplification (e.g., N=1), the critical concentration is
high (=1.35).

It was shown by means of the linearized differential
equation (46) that there exists a transition between an os-
cillatory and a nonoscillatory cellular state which is
driven by the concentration, c, of the kinesis stimulating
molecules.

In the next step, the amplitudes of the oscillations are
calculated. In this case the nonlinearizled differential
equation (34) has to be solved. The amplitudes of the
second messenger, M(t), the receptors, R(t), and the oc-
cupied receptors, Ro(t), are calculated as a function of
time. Typical results are shown in Figs. 11 and 12. The
calculated second intracellular messenger, M(t¢), oscil-
lates in time as shown in Fig. 11. The onset of the oscilla-
tions takes place after a lapse time, ¢,,, which is approxi-
mately the delay time in the amplification chain N /f.
M(t) is calculated for two different values of
amplification N. It demonstrates that the period grows
by a factor =2 if the amplification, N, is doubled. The
calculated oscillation of the receptor, R(t), and receptor
complex, R(¢), concentrations are shown in Fig. 12.

To compare numerical results with the linear stability
analysis one has to change the concentration ¢ and to see

Mo

c

FIG. 10. The steady state value M, vs the concentration c is
shown. The numbers are given in relative units.

40 T T T T T T T T
35 -
30 |
25 |-

M(t) 20

0 L L I I L
0 20 40 60 80 100 120 140 160 180 200

t

FIG 11. Numerical solutions of the model system are shown.
The second messenger M(¢) is calculated as a function of time.
The calculations are made for high concentration (c=1000).
The influence of the chemical amplifier on the second messenger
is demonstrated for two values of N(=10,20).

if there are still oscillations visible in M(¢). The upper
part of Fig. 13 shows the exponential decay of the oscilla-
tion amplitude as a function of time. Thus, the system
exhibits no oscillation for large times ¢t. The lower part of
Fig. 13 shows M(t) if the concentration is slightly in-
creased. The oscillation amplitude decays exponentially
to a finite value. Thus, the system exhibits oscillation for
large times where its amplitude is independent of the
starting value. In Fig. 14 the amplitude of the oscillating
second intracellular messenger (cellular output A4) is
shown as a function of concentration, ¢, and of the
amplification factor, N. A threshold behavior is demon-
strated. For small concentrations , ¢ <c,, the oscillation
amplitude of the second intracellular messenger is zero.
The cell is in a stable state—no migration is expected.
For large concentrations, ¢ > c., the oscillation amplitude
of the second intracellular messenger is finite. The cell is
in an oscillatory state—migration is expected. The criti-
cal concentration is also a function of the amplification as
already shown. The critical concentration, c,, decreases
from =~3.5 (N=1) to =0.8 (N — ) if the amplification
factor, N, is increased.

Experimental verifications

Our approximation of the cellular signal transduction
chain (detection system—first intracellular messenger —

R(t) —
RC(t) —

R, Rc

0 L L 1 L 1 L 1 ! L

0 20 40 60 80 100 120 140 160 180 200

t

FIG. 12. The receptor R and receptor-complex R are calcu-
lated as a function of time (¢ =10 and N =10).
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FIG. 13. The second messenger M(¢) is shown as a function
of time. The oscillating amplitude decays to zero for large times
as seen in the upper part of the figure (¢ <c.) and to a finite
value as seen in the lower part of the figure (¢ >c,).

chemical amplifier—second intracellular messenger —
feedback to the detection system and the chemical
amplifier) leads to self-maintained oscillation in the cellu-
lar signal transduction chain. The oscillations could be
detected on a molecular level or on a macroscopic level
where cellular functions are investigated.

(i) The self-ignition model for cellular migration is
based on biochemical reaction which takes place in and
at the cellular membrane. No further cellular elements

cellular
output A —
60
50
40
30

20
10 = 50
0 20 N

S P I,
1000 100 >

concentration c

FIG. 14. The oscillating part of the second messenger (z
direction) is shown as a function of the concentration ¢ of the
kinesis stimulating molecules (x direction) and of the chemical
amplification N (y direction) (start N=35, increment AN=5).
For small concentrations, ¢ <c,, the cellular state is stable—no
oscillation and no migration. For large concentrations, ¢ > ¢,

the cellular state is unstable—the cells perform oscillation and
the cells migrate.
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are used. The existence of cytokineplasts (ghosts)
prepared out of granulocytes is a strong support of the
model since the ghosts contain no visible cellular struc-
ture but still have the ability to perform directed and
nondirected migration [9,10]. These ghosts have a
rhythm with a characteristic time of 8—10 s as can be
measured by the cross-correlation function between the
projected area and the speed [32]. For ghosts and whole
cells, the same rhythm is predicted as actually observed.

(i) One prediction of the model is that the second in-
tracellular signal should show oscillations. Intracellular
calcium is regarded as one important second intracellular
messenger which can easily be detected. One of our
current projects is to find oscillations in granulocytes
with an 8 s periodicity; however, up to now we have not
been successful [31].

(iii) The predicted rhythm in the detection cycle is
proved by the ability to synchronize cells by periodically
applied extracellular signals with a repetition time of a
multifold of 8 s [21].

(iv) One prediction of the model is that there exists a
lapse time between signal recognition and cellular
response. This lapse time should be approximately the
repetition time of the oscillations. In granulocytes the re-
petition time was measured to be approximately 8 s. The
measured lapse time is approximately 8—10 s.

(v) One prediction of the model is that the fluctuation-
dissipation theorem does not hold since the cell cannot
receive continuous external signals. The cell can only re-
ceive extracellular signals in well defined time increments
with respect to the predicted internal rhythm (see Fig.
12). The experimental proof of the failure of the
fluctuation-dissipation theorem takes place in several
steps: First, fluctuation experiments are performed as (i)
random walks and (ii) directed migrations with a constant
guiding field (the trajectories fluctuate around the desired
direction). Second, these fluctuation experiments are
quantified [8]. Third, a guiding field-jump experiment is
predicted by using the values obtained from the fluctua-
tion experiments, e.g., a relaxation time of 20-30 s is ex-
pected. Fourth, a guiding field-jump experiment is per-
formed. The actual measured relaxation time is 42 s—
much longer than predicted. The fluctuation-dissipation
theorem failed due to the intracellular measuring cycle
[8].

Next, the measured chemokinetic dose-response curve
will be compared with model predictions.

Dose-response curve

The simple approximation of the signal transduction
chain (receptor-ligand kinetics, one reaction step for the
amplifier, speed proportional to second messenger, no
feedback) describes quite well the measured chemokinetic
dose-response curve. Receptor occupancy is obviously
the essential event for explaining the cellular response.
The signal transduction chain is approximated more real-
istically in the new model (receptor-ligand Kkinetics,
several reaction steps for the amplifier, speed proportion-
al to second messenger, feedback to receptor supply
and/or amplifier). The predicted dose-response curve is
calculated in the following way: First, the second intra-
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cellular messenger, M(t), is calculated as a function of
time, ¢, at a given concentration, c¢. The oscillation am-
plitude of M is determined for long ¢. The cellular speed
is expected to be proportional to the concentration of the
second intracellular messenger. This procedure is repeat-
ed for different ¢, and one obtains the desired chemok-
inetic dose-response curve (Fig. 2). The oscillation ampli-
tude of M increases with increasing amplification factor.
The more realistic model predicts a threshold for small c.
The oscillation amplitude of M is zero for ¢ <c, and finite
for ¢>c,. This threshold behavior is an essential
difference between the prediction of the simple and of the
more realistic model. The critical concentration, c,, al-
ters when the amplification is altered. The measured
chemokinetic dose-response curve is compared to the cal-
culated curve (Fig. 2). The systematic deviations between
the measured and the predicted values are evident at low
concentration (¢ <Kp). The measured speed is larger
than the predicted one. This systematic deviation can
partially be explained by systematic errors in the experi-
mental determination of the speed. (i) The cells are
washed but it is possible that kinesis-stimulating mole-
cules of the blood plasma are attached at the cells. (ii)
The translocation of the center of mass of a migrating
cell is determined from the center of the cellular contour
line. For low speeds, this approximation can lead to con-
siderable error, for example when a change of the cellular
contour occurs without net displacement. (iii) A further
systematic error originates from immobile cells (a certain
fraction of the cells do not move). This fact can be ex-
plained by nonidentical biological objects (e.g., cellular
age), preparation artifacts (e.g., injured cells). In general,
the mean speed is calculated without considering immo-
bile cells. But this leads to a too large value at low ¢ since
the fraction of immobile cells increases with decreasing ¢
[1-3 % of immobile cells at large ¢ (> Ky ) and 20-30 %
at low ¢ ( <Ky )]. When the measured speed is corrected,
the accordance is better than that shown here. New ex-
periments are in preparation to clarify this point.

Cell migration, surface instability, and laser

It is interesting to note that the speed of stimulated
cells can be compared with the stimulated light emission
of a laser. Both systems are far from thermodynamic
equilibrium. The essential parameter for a laser is the
light pump energy and the essential parameter for a cell
is the concentration of migration-stimulating molecules
which activate the cellular signal transduction chain.
There exists a critical value for each example; if the pa-
rameter is below a critical value, then the output of the
system is zero—no coherent light leaving the laser, the
cellular signal chain does not perform oscillation. If the
parameter is above a critical value, then the output of the
system is nonzero. Coherent light is leaving the laser and
its intensity increases with increasing pump energy. The
cellular signal chain performs oscillations and the ampli-
tude increases with increasing concentration of the cell-
stimulating molecules.

Direct conversion of chemical into mechanical energy
and signal transduction in self-organized entities is one of
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the main processes in biological movements. The signal
transduction chain of granulocytes can also be interpret-
ed as an interfacial instability [S]. Nakache and Du-
peyrat [33] investigated the spontaneous motions of mod-
el systems where a surface instability takes place. The
movements occur between two immiscible solutions con-
taining charged species, one of which is surface-active
and, therefore, modifies the interfacial tension between
the two media. Periodic motions in the interface plane
take place when an aqueous solution of long-chain alkyl-
trimethylammonium halogenide is poured over a nitro-
benzene solution. These large-scale interfacial motions
are attributed to the Marangoni effect where interfacial
flow is driven by gradients in interfacial tension due to
concentration variations resulting from mass transfer
through the interface. If, for example, a 2 mm large drop
of one phase is surrounded by the other one, it is pro-
pelled by jumps [5]. Thus, a droplet is driven to migrate
by a surface instability. The movement can be directed
by light if a copolymer is introduced into the interface
[5]. The surface tension of the copolymer (methyl
methacrylate and spiropyran derivative) is altered by
light [34]. The interfacial instability will start in a part
that is illuminated with UV light. The migration dis-
tance is very small since the droplets are far from ther-
modynamic equilibrium only briefly.

Outlook

A common concept for understanding systems far from
thermodynamic equilibrium is consequently applied to
cell migration. This study wants to place the migration
of cells in a better perspective. Here, the chemokinetic
response is analyzed in detail. The signal transduction
chain for directed phenomena can be treated in a similar
but more complex way. In addition, the description is
not restricted to granulocytes. It should hold for cells
such as monocytes, fibroblasts, osteoblasts, kerationo-
cytes, and neural crest cells. Other phenomena where
feedback and delayed signals are essential in the signal
transduction chain can be investigated in a similar way,
e.g., nerve growth.

The practical importance of this study lies in the de-
tailed analysis of the experimental condition. The
description may be useful in the definition of cellular dys-
function. For example, virus-induced disturbances where
the temporal and spatial events in the signal transduction
chain are altered [35].

The emphasis on the current research is to go beyond
this machine description. The cell regarded as a self-
organized molecular machine raises many questions
about the involved physical laws. At present state the
physical aspects of the cellular signal transduction chain
are focused into a typical liquid crystal problem—the
vesicle fusion process.
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APPENDIX A: GENERAL SOLUTION B=B,;+B, . (A8)
The general solution of Eq. (10), The B values are by using the eigenvalues A, , [Eq. (49)]:
a;; a
d R _ |9 % R 4 f(M) ’ (AD) ay, ap
dt |R¢ ay axp | |R¢ 0 B,= a a s (A9)
21 4
is
T4 ap
R t f(M) B,= A10
R, =fo exp[ A(t—t)] | o |at’ A2) 27 | gy  —ay, (A10)
(A3) 1 a4y 2ay
. B = All
with al,—2a,a, —a?, | 291 @xy—ap (Alb
_|%n 9n (A4) The final result is the temporal changes of the number of
A= a, ay |’ receptors, R(z),
J
¢ | @y exp[A(t—1")]+a,, exp[Ay(t—1')]
R(t)= Mdt'
(= [ o ¥a, f(M) (A12)

and the temporal changes of the number of occupied receptors, R(t),

Rc<t)=f0t

ay explA (1 —1")]—ay; exp[A,(t —1")]

F(M)dr' . (A13)

aptay

APPENDIX B: ADIABATIC APPROXIMATION

A part of the integration in Egs. (13) and (14) can be performed if the receptor supply function, f(M), varies slowly in
time compared with the exponential function exp[A,z]:

(1— At
R(t)=f(M) a exp| 1]+ a

t ’ ’ ’
et % o ray do PR =L (M B1)

A Taylor series of f(M(t')) is taken to proceed further:

P =f N —4L -+ ldfu PRF - (B2)
The remaining integral can be solved in the following way:

t ’ ’ [ — t ’ ’ df t ’ ’ ’
S, explaat =N (M Ndr = £ ) [ "explig(e—e))de’ =L [ exphy(e —1)1(e —2)ae

otexp[lz(t—t')]—————

LM pey - ){P(Z —xzt)+/{P(3 —Apt)— (B3)

A2
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where P(n,t) is the incomplete gamma function of order
n (Fig. 7):

(tl )n —1
(n—1)
The higher-order terms in (B3) can be neglected if A, is in
the order of f. One gets

P(n,t)=f0texp[—t’] dt' . (B4)

%Pu, — 1)

2

J explha(t =) (M)t =

= f()LM) (1—exp[A,t]) .
2

(B5)

The temporal variations of the receptor density, R(z), are
obtained by inserting this result in (B1):
f(M) kntk,

2k, ko tkyc

R(t)=

as exp[A;t]

—f(M)
aptay Ay

a;;  exp[Ayt]

(B6)
aptay Ay

If the receptor ligand binding process is fast (large A;)

and the receptor inactivation process (small A,) then the
final result is

f(M) kntk, ap

exp[A,t]
—f(M) .
2ke k22+kllc alz+a21 }\,2

R(1)=

(B7)

The same calculation can be performed for R(¢).

APPENDIX C: CHEMICAL AMPLIFIER
AND FOCKER-PLANCK EQUATION

The rate equations of the chemical amplification chain

—(f1+b,)S;+b,S, , (C1)
S;=—(fi+b)S;+fi 1S1-1Fb; 1S 44 (€2)
fori=2,...,N—1, (C3)
SNZ'_(fN+bN)SN+fN71SN71 (C4)

can be transformed into a Fokker-Planck equation. This
approximation is valid for large N. The connection be-
tween the suffix, i, of the rate equations and a continuous
state variables, x, is
i
xX=27— .
N
The rate equation with the continuous state variable is
then

S(x)=f(x —€)S(x —e)— f(x)S(x)
+b(x+e)S(x+e)—b(x)S(x),

(C5)

(C6)

where € is a small increment of the state variable x. In
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the next step, a Taylor series of S with respect to x is tak-
en:

—o(e)_ 08 €3S
S(x—e)=S(x) eax+ ) axzi s (o7)]
2
S(x+€)+S(x)+e _a§+£_a_s+ (C8)
ox 2 9x?

A differential equation—the Fokker-Planck equation—is
obtained by inserting these Taylor series into Eq. (C6):

£_3 l—F(x)—*—Ba;D(x)]S(x) (©9)
with the drift term

F(x)=¢€[f(x)—b(x)] (C10)
and the diffusion term

D(x)=1[f(x)+b(x)] . (C11)

The drift term F(x ) describes how fast the chemical reac-
tions penetrate through the chemical amplifier. (F !
proportional to the time.) The diffusion term, D(x), de-
scribes the broadening of the input signal. If the forward
and backward rate constants are the same for every step
[f(x)=f,b(x)=b], Eq. (C9) simplifies to

%‘%——F%—FD-;%S; (C12)
with

F=e(f—b), (C13)

D=1leXf+b) (C14)

APPENDIX D: LINEARIZATION
OF THE SIGNAL TRANSDUCTION CHAIN

The signal transduction chain is described by
differential equation (34). The integral of this equation
can be approximated if G(¢—t’) is expanded in a Taylor
series in respect to ¢:

e 4G, 14d’G - .
G(t—t")=G(t) ot t +2 i t"F (D1)
with
dG _ 3G dM
dt oM dt ’ D2)
d’G _ 9*G dM | 3G d’M D3)
di2  aM? dt oM 4dr?

Then, G(t) is regarded near the steady state and a Taylor
series in respect to m is made

— _—aG — .« ..
G(t)=G(My)+ oM (M My)+ . (D4)
Equations (D2)-(D4) are inserted into Eq. (D1). One ob-

tains
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1y — aG —
3G | _aM , 1d°M ,
+ oM dt 2 dr? ! D3)

if only terms up to G /0M are considered. The integral
of Eq. (34) then reads

___l___. t(N—=1), —¢' , ., ,
(N—1) fot e "[Go+Gym(t—t')]dt
= , dm
1 d’m
+ —
2 ar N(N—+1)P(N+2,t)

(D6)

with m=M—M,. The incomplete gamma function
P(N,t) is approximated by the step function ®(t —N).
The bracket of this equation is approximated by

_ _dm . 1d’m .,
O(t—N) |m 7 N+ 2 ar’ N (D7)
by using Ot —N)=O(t—N—1)=0O(t—N—2) and

N(N+1)=~N?2. The bracket of Eq. (D7) is a Taylor series
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of m(t — N ) with respect to N.

The same result is obtained if the Poisson distribution
on the right-hand side of Eq. (D6) is approximated by
Dirac’s delta function, 8(¢). The approximation for the
bracket of Eq. (D6) is then

fOtS(t'——N)m(t—t’)dt’ . (D8)
The integration can be performed and one obtains
m(t—N).
The brackets of Eq. (D6) can be approximated by
dm d’m

- 1,0)+
mP(N,)= < ENP(N+1,6)+ =3

N(N+1)XN+2)

~m(t—N) for t >N
=0 fort<N .

The linearized differential equation for the signal
transduction chain is

dm _ 3G B
fo'gp =CoPWN, 0+ || mlt—N)
3H
‘H0+ nf Mom(t)] : (D9)
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